
The equality pv x = miJlx is derived also from formula (24), from which it follows that pv x is independent of  the 

longitudinal coordinate. 

As an analysis of  formula (25) showed, with increase incl0 (c lo> Clh) Or with increase inc,h (c,h> qo) for a 

prescribed flow rate Q, there is, as in the case of  a coaxial channel, an increase in the maximum value of v z due to an in- 

crease in the total flow of  gas mixture and a shift of  the point tma ~ (at which v z is maximal) towards the surface with a 

lower value of c 1 due to slowing down of  the flow of  gas mixture at the evaporation surface. 

An analysis of  (26) showed that with increase ingl0 (el0> glh) or Clh (C,h> C10) the longitudinal pressure drop for a 

prescribed Q increases. 

An analysis of  formulas (25), (26) showed that at the limit Clo , clh ~ 0 the formulas for the distribution of  v z and 

p become the known formulas for a one-component gas 

V z -= a2--qh2t  I t  - -  t ) ,  P = P O  - -  %o z, 
2 ~  ~- 

where a:o = ! 2 . u Q . / ( b h a n )  �9 

Thus, recondensation of  molecules of  one of the components of  a binary mixture greatly affects the distributions 
of  the longitudinal pressure drop and the longitudinal component of  the mass flow velocity in the channel The formulas 
obtained in this paper can be used to describe the flow of  binary gas mixtures in variable-temperature channels with small 
temperature drops [ 1 ], where the transport coefficients (dynamic viscosity, diffusion coefficient, thermal conductivity) can 
be regarded as quantities that are independent of  temperature. 

LITERATURE CITED 

1. A. Meisen, A. J. Bobkowicz, N. E. Cooke, and E. J. Farcas, "The separation of micron-size particles from air by 
diffusiophoresis," Can. J. Chem. Eng., 49, 449 (1971). 

2. L .G.  Loitsyanskii, Mechanics of  Liquid and Gas [in Russianl, third edition, Nauka, Moscow (1970). 
3. J .O .  Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley (1954). 

CALCULATION OF THE INTERACTION OF A LAMINAR 

BOUNDARY LAYER WITH AN EXTERNAL SUPERSONIC 

FLOW BEHIND AN OBSTACLE 

A. N.  A n t o n o v  UDC 532.526.2:533.69.011.5 

one  can cite many papers dealing with investigation of  flows in zones of  separation and reattachment of a laminar 
boundary layer [ 1-121. In regard to computational methods, it should be noted that the method of  interaction of  the 
boundary layer with an_external perfect flow, to determine flows in the base region, was first proposed in [1 ]. However, 
the lack of  sufficient data on the characteristics of  the incompressible laminar boundary layer has made it impossible to 
obtain satisfactory results on base pressure. In [4, 5] the proposed method was modified and applied to the region of  
interaction of  a density shock with a boundary layer [4], and also in the region of  separation of the laminar boundary layer 
on a cylindrical body in transverse flow [5]. 

The present paper computes flows behind two-dimensional and axisymmetric obstacles, based on a scheme for inter- 
action of  the boundary layer with an external perfect flow. 

1. We consider the following approximate flow scheme in the base region behind an obstacle washed by a uniform 
supersonic stream, a scheme of  typical interaction of  the boundary layer with an external perfect flow (Fig. 1). Between 
sections 1 and 2 there is flow expansion, AB is a line of  constant mass flux, and B is the stagnation point. The broken line 
denotes the edge of  the boundary layer. Immediately behind the body, between sections 2 and 3, there is a constant- 
pressure separation region, so that the interaction flow begins "at some section 3. The calculation of  the interaction between 
the viscous layers and the external, perfect, almost isentropic stream is carried out, as usual, with the boundary layer 
equations. We write down the system of equations for the compressible laminar boundary layer 

(P'*) , '>';'~) -~. (1 .1 )  

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 56-64, May-June, 1980. 
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with the boundary conditions 

for y = 0  u = p  = 0 ,  I = I w ,  
for g = 6  u = u  I, I - - I~ ,  

where I is the enthalpy; p is the dynamic viscosity; Pr is the Prandtl number; the subscript 1 refers to parameters at the 
outer edge of  the boundary layer; and the subscript w refers to parameters at the waU. 

The boundary conditions at the initial section of the interaction region 3 are the relations obtained from the 
conditions for conservation of  mass, momentum, and energy at the boundary of  the constant-pressure flow zone and the 
interaction region. For the boundary conditions at the final section 4, for the system of equations (1.1)-(1.3) applied in 
calculating the flow in the interaction region, we take the conditions written for a zero-gradient laminar boundary layer 
(the pressure gradient parameter f = O; the angle between the velocity vector at the edge of  the boundary layer and the 
body surface/3 = 0). It  should be noted that in the interaction region behind the obstacle (x < x 4) both of  these param- 
eters f and/3 differ from zero, and ~ < O. 

Applying the Stewartson-Dorodni tsyn transformation 

p o ~1 P 
= L* "1 _JL ds, q = dn, (1.4) 

~ ]J01 001 

we reduce the system of  equations for the compressible boundary layer to a system of boundary-layer equations for in- 
compressible flow; here it is assumed that Cp = const and Pr = 1, and 

~t01 101 

where C is the Sutherland constant. 

[2, 3]: 
From the system of  equations for the incompressible boundary layer we can obtain the following integral equation 

a~ -t- 1 (20** -k 0") = '~'o....!~U~ b'qw'ou (1.5) 

Here U = (aoJa l)u is the velocity in the transformed coordinate system 
0 0 

0 " =  t - - ~  dq, L-TS. (1.6) 
o ~ ! \  

where 0, 0", 0"* are, respectively, the boundary-layer thickness, the displacement thickness, and the momentum loss thick- 
ness for the incompressible boundary layer. 

We introduce the notation S = Io/lol - 1, where I o is the stagnation enthalpy. We introduce the parameters 
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o** {oc) o**2 ou~ 
l =  u--~',~ij  " { -  "0~ o.~. ( 1 . 7 )  

F = 2[/(H --  2) + l], H = 0*/0*% h = 6*/6**. 

From the second relation of  Eq. (1.7) we can obtain the expression 

dM/dx = --f~~ 

where ~o = d~ /dx ;Re ,  = UIO**/v m. From Eqs. (1.5) and (1.7) we also obtain 

dO**/dz = F~~ 

Since the  Outer edge of  the boundary layer intersects a stream line of  the perfect fluid at a local angle whose tangent 
is d6/dx - tan 13, the continuity equation is written in the form [1 ] 

5 
ct6 l dm ( ) 

- - t g ~  dx m :  fpudg , P1h . 

where/3 is the angle between the velocity vector at the edge of  the boundary layer and the x axis. After  transformations 
we obtain 

dS* 5" I '. d(v ~:1) 
dT- t g f 3 - - ' -  I-- - -  

where 6, 6*, 6** are the boundary layer thickness, the displacement thickness, and the momentum loss thickness of the 
compressible boundary layer; h* = 6*/6; H* = 0"/0.  

Thus, the system of  equations determining the flow in the zone of interaction of  the boundary layer and the 
external perfect flow has the form 

dM.'d~ = F0(M, 6% 0"*), d6*dz =qc = F I ( M ,  6% 0"*), (1.8) 
dO**/dx = F~(_XI. 6*. 9"*), 

where 

Fo u** m,. '  F~ - 3  #~ - -  j 5 ;  

/:,~o p ,, 
F . , - -  ~ ;  F , . =  M-- I  0_L; d6* 

_ o P o t  at  q;' = "~x '  

In order to use the system (1.8) we need to find the relation between the parameters H, H*, l, F, S w and f. We 

can find these by using the F a l k n e r - S k a n  similarity solutions for gradient laminar flows in an incompressible boundary 
layer, obtained in [2, 3]. Figures 2-4 show the computed relations thus obtained H = H(f), i = l(f) and H* = H*(H) for 
S w = 0 and - 0 . 8 ,  which determine the relations for the incompressible boundary layer between the shape factor H and 

the pressure gradient parameter  f, between the friction parameter  l and the parameter f, and also H* = 0"/0 and H. Here 

subscript 1 denotes curves with S = 0, and subscript 2 denotes curves with S = -0 .8 .  The curves in Figs. 2 and 3 have 
two solution branches, correspond']ng to attached and separated flow. In Fig. ~ the attached flow region corresponds to 
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the lower branch of  the curve, and the separated flow corresponds to the upper branch. In Fig. 3, on the other hand, the 
upper branch of  the curve defines the attached flow region, and the lower branch defines the separated region. With varia- 
tion of  S w there is a change in the shape of  the curves, and there is a change in the location of  the points of boundary- 

layer attachment and separation. 

In order to solve the system (1.8) we must relate the basic parameters of the physical flow plane and the transformed 
flow plane. Using Eqs. (1.4), (1.6), and (1.7), we obtain 

where 

Eo = ~. Pl al. (1.9) 
P01 aOl ' 

5** = 0"* P01 a01. 
01 a l '  (1.10) 

h = I o l  It @(Iol-__ll; 
l i  \ I~  , (1.1 1) 

h*  = //IO1/11 + 0,5 (X - -  t)  M g ( 1 . 1 2 )  
I-I/H* --0,5 (• t) M ~ (H + 1)' 

0 

= (o* + o; - -  S san/s . 
0 

At each step during the computations, in integrating the system of equations (1.8) we determine the parameters 
M, 8*, 0"* and find the momentum loss thickness 5** from Eq. (1.10). Then we calculate the additional boundary layer 

parameters H, H*, h, h*, f, l. Here h = 5" /5"* ;  the parameter H is calculated from Eq. (1.11), and then we find f from 

H using Fig. 2, and the value of  l is determined from Fig. 3. The parameter H* is determined from Fig. 4, and the param- 

eter h* is calculated from Eq. (1.12). For planar flow the parameter/3 is computed from the Prandt l -Meyer  relation, and 
by the method of  characteristics for axisymmetric flow. 

2. The initial conditions for the system of equations (1.8), describing the flow in the interaction zone in the wake 
behind the obstacle, are determined from the condition that this flow must match the flow in the constant-pressure mixing 
zone. 

We shall denote by 5 t , ~*, 5 l**, M 1 , respectively, the boundary-layer thickness, the displacement thickness, the 

momentum loss thickness, and the Mach number. Considering first planar flow, we assume that at section 2, corresponding 
to rotation of  the external perfect flow through an angle/32 = X(M 1) - X(M 2), a boundary layer arises with parameters 

~2' 5~, 6~*, M2. The relation between the parameters 5** and ~ *  for the boundary layer which has passed through the 

expansion wave, we shall choose in the form [ 13] 

5~*/~*i* = z = (piuiM2,)J(p~u~M~)~. (2.1) 

We determine the parameters in the constant pressure flow zone. From the second relation of  Eq. (1.8) we 
calculate the displacement thickness 5*,  and then, using the conditions for conservation of  mass and momentum in the 
constant-pressure zone, we determine the momentum toss thickness 

5*_ = (5~ --I- b) + (p_x, 6"* = 5=**, q)_ = tg 132 (M_ = M2). (2.2) 

Matching of  the interaction flow with the constant-pressure flow is done, as in [ 141, with the condition for con- 
servation of  the displacement thickness and the momentum loss thickness at section 3: 

62- 6* 5** ** = s+, 3- = 53+. (2.3) 

We determine the length of  the constant-pressure region x 3 from the condition that the velocity and enthalpy 
should be the same on the dividing streamline of  the mixing zone and on the dividing streamline in the interaction region 
at section 3: 
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where a* = U./U~; I ~ = I~/Io~; U ,  and I~ are the velocity and total enthalpy on the dividing streamline. 

In the flow interaction region, using the Fa lkne r -Skan  similarity solutions, we can obtain the relation H = H(a*, I~ 
which it is convenient to represent, for Iw/I m = 1 (here I ~ = 1) in the form [4, 5] 

H = ( O . 2 4 8 - - O . 4 3 5 a * - - O . O 3 6 6 a * 2 )  -1. (2.5) 

where 

We now choose a dimensionless coordinate for the constant-pressure mixing zone in the form 

x t 1 
x* = ~ e e  = Re "-'N' 6a 

(2.6) 

p,u~6, /tq. X xalcos ~=; R e = p ,  , X / p , ,  Re* 

We can calculate the relative velocity a* as a function of x* and 1 ~ for the mixing zone by the method of [6, 7]. 
For the case I ~ = 1 the dependence of a* on x* has the form [6] 

a* = 0.338 q- 0.278 lg x*. (2.7) 

By simultaneous use of Eqs. (2.1)-(2.7) we can determine the length x 3 and calculate the parameters 6~, 6~*, M3, 

which serve as initial boundary conditions for integrating the system of equations (1.8). Here from tile given M 2 we 

determine/32, and from Eqs. (2.1) and (2.2) we calculate 6~* and ~a" From the known value of 67* we calculate Re*, 

and from Eq. (2.6) we calculate x*. From Eqs. (2.7) and (2.5) we calculate the shape factor H 3 and then h a from Eq. 

(1.1 1). Using the value of h3, we can calculate the displacement thickness 6" * a = ha6a. For section 3 we write the first 
relation of Eq. (2.2) in the form 

L~3 -~::* /~3 ,~, r~ (2.8) 

From Eq. (2.8) we find xa, since all the quantities on the right side are known. 

The flat plate flow conditions (~4 = 0, f4 = 0) serve as the final boundary conditions at section 4. We note that 

the calculation is simplified for 6, > b. In that case boundary layer flow is realized practically everywhere behind the 

obstacle and xa~0.  In solving the boundary problem, as in [ t4],  for the system of equations (1.8) the integration is 

done from section 3 in the direction of the main flow, up to section 4; here the value of M a (or of p2) is chosen by a 

"ranging" method in such a way as to obtain the parameters ~4 = 0 and fa = 0 at section 4. 

3. For laminar flow behind the obstacle, as has been shown by experimental investigations [8, 9], the governing 
** parameters are M 1 , Re, 61 Jb, S w. We consider the influence of these on the base pressure. Calculations show that with 

increase of M~ there is a decrease in the base pressure, a decrease in Re 1cads to an increase in base pressure, an increase in 

the relative boundary-layer thickness increases the base pressure, and cooling of the obstacle surface (decrease in S w) re- 

duces the base pressure. To find the influence of S w on the base pressure we performed caiculations for S w = 0 and -0 .8  

for the case where the boundary-layer thickness is comparable with the obstacle height(6] ~ b). 

Figure 5 shows the calculated pressure distribution pO = P/P1 behind the obstacle at M 1 = 2.9 for the undisturbed 

flow ahead of the obstacle (solid curve), and compares this with experimental data (points) corresponding to the values 
M 1 = 2.9, Re 1 = 0.3"I0 s, b = 0.2"10 -2 m for which the experiments were conducted. 
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An annular contoured nozzle with a center-body was used in the experiment. The center-body was a model, a 
cylinder with an axisymmetric step whose surface was parallel to the flow axis. The model diameter ahead of  the step was 
d = 2r 1 = 20 mm, and the step height was b = 2 ram. The static pressure was measured ahead of  the step and along the 
surface behind the step, using tubes with internal diameter dl = 0.8 mm. The Reynolds number Re 1 was computed for 
the incident flow ahead of  the step, using the center-body length from the nozzle throat to the base. To measure the 
static pressure we used manometers ffiled with a liquid of  low specific gravity and low vapor pressure (dibutylphthalate, 
specific gravity 1.049 g/cm a, vapor pressure 10 -6 torr). Prior to the experiment a fore-vacuum pump evacuated the manom- 
eter cavities and tank to 10 "2 torr. The error in measuring the base pressure was 2-4%. The value of  M at the nozzle 
exit was calculated from the total profiles in the core. The asymmetry in Po/P0 within the core (y ~ 2-12 mm) was 

A(pJpo)  ~ 7% , which corresponds to a variation of  M ~ 1%. 

The boundary-layer thickness ahead of  the separation (6j ~ 2.2 mm) was measured by means of  a total pressure 

tube (a micro-probe); here we determined the boundary between the annular flow core and the boundary layer. We used 
this approach because the investigations were done at low pressures and the accuracy in measuring the P'o/P0 profile was 
low. 

Estimates were made of the influence of  the parameter 61/r1~ 0.22 on the characteristics of  the boundary layer 
on the convex axisymmetric surfaces, and these showed that the boundary layer before separation in the case considered 
is close to a flat plate boundary layer, and that some inaccuracy in determining ~**/b has practically no influence on the 
base pressure. When there is flow separation on a body with r~ = 10 mm, three-dimensional effects may influence the 
base pressure, due to differences in the flow considered from the planar case. However, as is shown by the experimental 
investigations of  various authors, e.g., [8], this influence is small, even when significant three-dimensional effects are present 
in the base region. 

We also computed flows behind axisymmetric steps. Here we used the same flow model as for the planar flow, but 
the computation of  the external perfect flow (to obtain the parameter ~) was done by the method of  characteristics [ 14, 
15]. To determine the parameters at section 3 of  the beginning of  interaction of  the boundary layer with the external 
perfect flow we used the relations 

x 3 

6" ( 6 ; ~ - b ) ~ - S  tg~3dx, 6"* rx ** 
3 3 r2  

0 

which can be obtained, for the constant pressure flow zone, from the second and third equations of  Eq. (1.8). The final 
boundary conditions for the system (1.8) are the conditions ~4 = 0 and f4 = 0 at section 4. This method was applied for 
a base support bracket radius of  r 2 >> ~ .  The results from this method of  computation are compared with the results 

of  experiments performed in [ 10, 11] for incident stream values of  Minciaent (Mineiaent = 8; 11.8; 14) and of  Re incident based on 

the model midsection diameter and the incident stream parameters of  R%o,~ = 2.5.10~; 5.t05; 0.12-t03. In these experi- 
o 5 ~ ments the base pressure p i,cia~nt = Pbase/Pincident was measured behind cones of  semivertex angie a~ = [10] and 15 ~ [I 1 ]. 

The experimental results are shown in Fig. 6 by points 1 and 2, respectively, for [101 and [ 11], and points 3 show the 
calculations done for flow over the cones. In the computations we used the relation 

p i o -  % ~  
n--  PC Pi; 

where Pineident is the pressure in the oncoming stream; Pco,e' P~ase are the pressures on the cone surface and in the base 

region. The ratio Peone/Pineident was calculated for a given Mincident from conical flow tables, and the ratio Pbase/Pcone was 

calculated using the method of  this paper. The calculation was done for a cone with a base bracket whose relative size is 
r J r  1 = 0.25. The experimental results on base pressure behind a cylindrical body and a cone with a base bracket, for 

turbulent, transitional, and laminar flow conditions [12, 16] show that the base pressure for r J r  1 = 0 -0 .3  is approximately 

constant. Therefore, we can compare the calculated results for r2/r I = 0.25 with the experimental data for r2/r 1 = 0. The 

results of  the calculations (Fig. 6) show satisfactory agreement with experiment. 
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SOLITONS IN A DOWN-FLOWING FILM WITH MODERATE 

MASS FLOW RATES OF THE LIQUID 

O. Yu. Tswelodub UDC 532.51 

Using the hypothesis of self-similarity, in [ 1 ] an equation was obtained describing long-wave perturbations in a 
vertical film of  liquid with moderate  mass flow rates: 

, Oh , ~ ) h  "~ 
" T  , . c  - -  3 \at ~ 1.69 ~ )  \ ~  -4- 0.71 , @ W0x-- ~ = 0 ,  ( I )  

where Re = gh~/3p 2 ; W = o/ph2 o ; h is the shift of the surface of the film from the unperturbed level, measured in units of  

ho; and h0 is the thickness of  the unperturbed film. 

For  a steady-state running wave h = h(x - ct), from ( I )  we obtain 

(3 - -  c)h' + 6hh' - -  2 Re c2(hh')"!5 + t le(t .69 - -  c)(0.7I - -  c)h ' /3  -+- Wh ~v = 0 (2) 

(a prime means differentiation with respect to x). 

In finding soliton solutions of Eq. (2), it  can be integrated once: 

(3 - -  c)h @ 3h ~ - -  2 Rec2hh'/15 -- tle (1,69 - -  c)(0.71 - -  c)h'/3 ~\V]~": = 0. (3) 

Using the replacement 

Eq. (3) is brought to the form 

where 

Relationships (4)-(6) are valid if 

h =at-I ,  xj = bx. 

a = Wb 3, b = (Re(t,69 - -  c ) (0 j l  - -  c)/'P~u (4) 

- - c iH  +- 3H 2 - -  21nHH" -- H '  ~- H '~' = 0, 

cl = (c - -  3)(3 (z(k69 - -  c)(0,71 - -  c)))~P, 

m = c2z((1.69 - -  c)(0.Tt - -  c)'3) ~ e'15. z = (tteaiW)~/< 

c ~ t . ( ~ 9  or c % 0 . 7 t .  

(5) 

(6) 
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